Self-organized criticality as a fundamental property of neural systems
نویسندگان
چکیده
The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored.
منابع مشابه
Self-organized criticality in neural network models
Information processing by a network of dynamical elements is a delicate matter: Avalanches of activity can die out if the network is not connected enough or if the elements are not sensitive enough; on the other hand, activity avalanches can grow and spread over the entire network and override information processing as observed in epilepsy. Therefore, it has long been argued that neural network...
متن کاملHierarchical modular structure enhances the robustness of self-organized criticality in neural networks
One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical...
متن کاملSelf-organized Criticality via Retro-Synaptic Signals
The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organized criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behavior in these systems, and how they interact with othe...
متن کاملCriticality of avalanche dynamics in adaptive recurrent networks
In many studies of self-organized criticality (SOC), branching processes were used to model the dynamics of the activity of the system during avalanches. This mathematical simplification was also adopted when investigating systems with a complicated connection topology including recurrent and subthreshold interactions. However, none of these studies really analyzed whether this convenient appro...
متن کامل